

Fully Distributed Scrum: The Secret Sauce for Hyperproductive Offshored

Development Teams

 Jeff Sutherland, Ph.D. Guido Schoonheim Eelco Rustenburg Maurits Rijk
 Scrum, Inc. Xebia b.v. Xebia b.v. Xebia b.v.

 Boston, MA, US Hilversum, Netherlands Hilversum, Netherlands Hilversum, Netherlands
jeff.sutherland@computer.org gschoonheim@xebia.com erustenburg@xebia.com mrijk@xebia.com

Abstract

Scrum was designed to achieve a hyperproductive
state where productivity increases 5-10 times over
industry averages and many collocated teams have
achieved this effect. The question for this paper is
whether distributed, offshore teams can consistently
achieve the hyperproductive state. In particular, can a
team establish a localized velocity and then maintain
or increase that velocity when distributing teams
across continents. Since 2006, Xebia started projects
with half Dutch and half Indian team members. After
establishing localized hyperproductivity, they move the
Indian members of the team to India and show
increasing velocity with fully distributed teams. After
running XP engineering practices inside many
distributed Scrum projects, Xebia has systematically
productized a model very similar to the SirsiDynix
model [1] for high performance, distributed, offshore
teams with outstanding quality.

1. Introduction

This paper introduces a highly successful model
for producing distributed, offshore team productivity
that is linearly scalable across continents and equal to
collocated velocity of a single team. The model is
repeatable, proven across many projects, and is
recommended for teams that can execute a high
performance Scrum implementation [2] with XP
engineering practices inside [3].

Agile project management with Scrum derives
from best business practices in companies like Fuji-
Xerox, Honda, Canon, and Toyota [4]. Combining
Scrum with XP engineering practices has generated
hyperproductive teams with 5-10 times industry
average performance since 1993 [5] [6]. In 2005, two
Agile companies, SirsiDynix (U.S.) and Exigen
Services (Russia), used distributed Scrum teams to
deliver linearly scalable performance for a large project

of over 1M lines of code. A distributed team of over
50 people in the U.S. and Russia delivered velocity per
developer equivalent to a collocated Scrum team and
produced the same number of features as a typical 350
person waterfall team [7].

During 2006-2008, Xebia implemented a
distributed software development team model on
multiple projects of variable types with teams half in
the Netherlands and half in India. These distributed
teams used the Scrum process with XP engineering
practices inside. When replicated over multiple
projects, the Xebia implementation shows distributed
velocity to be the same as SirsiDynix.

Here we discuss offshoring strategies for
overcoming the geographic, language, and cultural
barriers that impede distributed development and
describe the secret sauce needed to avoid traditional
outsourcing failures. Distribution of individual Scrum
teams across geographies eliminates communication
failures, XP practices solve integration problems, and
daily team meetings maintain high focus on customer
priorities.

Earlier work in other companies showed that
collocation doubled Agile team productivity [8]. Here,
the fully distributed model supports geographically
transparent software development projects where
performance consistently meets or exceeds
productivity of collocated Agile teams.

2. Challenges in outsourcing offshore

U.S., European, or Japanese companies often
outsource software development to offshore locations
like Eastern Europe, Russia, or the Far East. Typically,
remote teams operate independently and
communication problems lower productivity. Most
offshoring organizations require detailed specifications
before they begin a project and theses traditional
project planning methodologies show high failure
rates.

The hidden costs of offshoring are significant,
beginning with startup costs. Barthelemy [8] surveyed
50 companies and found that 14% of outsourcing to
offshore operations were failures. In the remainder,
costs of transitioning to a new vendor often canceled
out anticipated savings from low labor costs. The
average time from evaluating offshoring to beginning
of vendor performance was 18 months for small
projects. As a result, the MIT Sloan Management
Review advises readers not to outsource critical IT
functions offshore.

The three key advantages that offshoring strives to
achieve are (1) lower costs of labor, (2) capture talent
not available locally, and (3) increase and decrease
project size without layoffs. The first is not easily
achievable. At PatientKeeper (a MIT startup company
in 2000) during 2004-2007, the break even point for
outsourcing was achieved only when Indian developers
cost less than 10% of American developers. The
PatientKeeper Board permanently terminated
outsourcing after reviewing these ROI data.

Capturing external talent may also be a problem.
Jack Blount, CEO of Dynix and former COO of
Borland refused to outsource to India and China after
he verified that annual turnover rates were 30-50% [9].
And increasing staff by outsourcing can often result in
loss of core knowledge when offshore staff leaves a
project.

Achieving promised benefits of outsourcing
requires real cost savings, stable offshore teams, and a
strategy for retaining core knowledge onshore. This
can be achieved with fully distributed Agile teams that
can maintain the same velocity as onshore teams and
with onshore teams that maintain the same knowledge
level as offshore teams.

3. Distributed Scrum team models

Here we consider three distributed Scrum models
commonly observed in practice.

Isolated Scrums - Teams are isolated across
geographies.

Distributed Scrum of Scrums – Scrum teams are
isolated across geographies and integrated by a Scrum
of Scrums [6] that meets regularly across geographies.

Fully distributed Scrums – Scrum teams are
cross-functional with members distributed across
geographies.

Isolated Scrums as in the Google AdWords project
have reported the need for improve communication
practices. Best practice recommended by the Scrum
Alliance is a Distributed Scrum of Scrums model. This
model partitions work across cross-functional, isolated
Scrum teams while eliminating most dependencies

between teams. Scrum teams are linked by a Scrum-of-
Scrums where ScrumMasters (team leaders/project
managers) meet regularly across locations. The Fully
Distributed Scrum model, as shown in Xebia’s
OneTeam model, has all teams fully distributed and
each team has members at multiple locations. While
this appears to create communication and coordination
burdens, the daily Scrum meetings actually help to
break down cultural barriers and disparities in work
styles while simultaneously enhancing customer focus
and offshore understanding of customer needs. On
enterprise implementations, it organizes the project
into a single whole with an integrated global code base.

Maximum business value is delivered in Scrum by
implementing the Product Backlog in order of business
value of features. Xebia product features are
represented by user stories and size of a story is
represented in story points [5]. Xebia teams measure
cost in Euros per user story. The value of the feature
divided by actual cost is the prime indicator of
business value delivered and this is directly
proportional to the velocity of the team in story points
per iteration.

Xebia teams consistently validate that distributed
velocity equals collocated velocity as measured by cost
per story point, a direct indicator of business value.
The Fully Distributed Scrums model is recommended
for experienced Agile teams in multiple locations
because cost per story point is the same as localized
teams and, counterintuitively, Xebia distributed teams
have better focus on executing stories that fit customer
needs than localized teams.

The best standard metric to compare productivity
across projects is Function Points as it directly
represents features delivered. Capers Jones
demonstrated years ago that the number of features
delivered in Function Points can be estimated by
“back-firing” using lines of code delivered [7]. While
this is a less direct measure of business value, it is the
best measure available to compare teams industry
wide.

One might argue that delivering lots of code may
not produce business value. Scrum teams running XP
engineering practices deliver more features per line of
code than industry average project teams because:
• Scrum orders Product Backlog by business value

and assures lines of code delivered maximize
business value.

• The XP practice of refactoring eliminates many
thousands of lines of code that would remain static
in the code base of a waterfall team.
The net result is that comparisons of business

value delivered by Scrum/XP teams is conservative

compared to waterfall teams when measured by any
indicator affected by lines of code.

Thus the message of this paper is that Xebia
Scrum/XP teams deliver Function Points over seven
times faster than industry average waterfall teams and
the Function Points they deliver have higher business
value than the waterfall teams by over an order of
magnitude. Since this value is delivered at the same
cost per story point, and this cost is a direct indicator of
business value, either locally or distributed, and no
other model in the history of software development has
demonstrated this capability, the OneTeam model is
recommended for distributed development by those
Agile teams capable of executing it.

4. Xebia ProRail PUB case study

The model for Fully Distributed Scrums is best

illustrated by a real life example of a Xebia OneTeam
project; the ProRail PUB project.

ProRail, the logistical and infrastructural part of the
Dutch railways, has been developing a new
information system for travelers. Information about
train departure times is stored centrally and updated
with information from the rail network. When a train is
delayed or arrives early this information is captured by
sensors in the infrastructure as well as by manual
actions to update train information.

The publishing of this information to travelers on all
the railway stations throughout the Netherlands is the
scope of Xebia’s development assignment.
Development included the aggregation and distribution
system (combining real time information about
multiple trains into messages relevant for stations), the
client in the displays, the audio system and the
controlling and monitoring interfaces. As this is a
mission critical, high-availability enterprise system
with large visibility, the non-functional requirements
are extensive.

Time was critical due to previous waterfall team
failures and meeting deadlines was a key criteria. The
transparency and empirical project control that Scrum
delivers were key incentives for the client to engage
Xebia. The choice to make it an offshore project was
driven by cost and scalability.

4.1. Project structure and scaling

Xebia initiated the PUB project with a short
initiation phase where the product backlog was
developed, basic architecture constraints were
established and QA, Acceptance and Requirements
management were set up with the customer.

After three weeks of project initiation, a collocated
Dutch development team completed the first two
iterations. Iteration length was set at two weeks
throughout the project. Indian team members were
included onsite starting with the third iteration. Both
Dutch and Indian team members worked as a single
collocated Scrum team with a single sprint backlog,
following all XP engineering practices.

In the shared onsite iterations the team members
forged personal relationships to last throughout the
project and Indian team members acquired a good
sense of customer context. It also got everyone aligned
concerning practices, standards, tooling, and natural
roles in the team formed. After three iterations the
onsite Indian team members returned to India. During
these first 5 iterations (10 weeks) the team established
collocated hyperproductivity.

The project scaled up after Indian team members
returned home. Engineers were added and two new
teams were formed, each with members in multiple
locations. Careful attention is paid to spreading the
experience among the new teams and practices like
pair programming are used to get new members up to
speed. This cell division like process is repeated until
the project is at the desired scale.

The project scaled up to three fully distributed
Scrum teams and a fourth local Scrum team, with a
total of 25 people. The different teams shared the same
product backlog but used their own sprint backlogs.

At the end of the project the teams were scaled
down and merged. As the client preferred to work with
Dutch engineers for maintenance the Indian side was
scaled down further. This was no problem since the use
of distributed teams also ensures distributed
knowledge.

The total size of the Xebia realization on this
project is about 20 man-years, 100.000+ lines of code
over a period of 11 months.

4.2. Advantages realized

The Xebia OneTeam approach for Fully Distributed

Scrum teams delivers the same results as a well
running collocated Scrum team even in an offshoring
situation. Different aspects of the PUB project can
illustrate this.

4.2.1. Productivity. During the project, velocity is
determined by the number of story points that the team
can realize in a single iteration. As story points are not
translatable between projects the PUB project size has
also been measured in function points. This measure
has been done for both the old (failed) implementation
and the new implementation by Xebia and these
figures correspond. While this only approximates

business value, it is the best means available to make
comparisons over projects. Below is a table taken from
a collocated 6 person Scrum (*) the SirsiDynix project
(**) and extended with PUB data .

Table 1: Productivity of Collocated Scrum vs.
Waterfall Teams [5], SirsiDynix Distributed Scrum

[9], and Xebia OneTeam.

 Colocated
Scrum*

Waterfall* SirsiDynix
Distributed

Scrum**

Xebia
Distributed

Scrum
Person
Months

54 540 827 125

Lines of
Java

51000 58000 671688 100000

Function
Points

959 900 12673 1887

FP per
dev. per
month

17.8 1.7 15.3 15.1

Table 1 shows Scrum projects easily outperform the

waterfall project. Xebia Distributed Scrum is close to
the collocated Scrum and the performance of the
SirsiDynix and Xebia project is very similar. This
shows that the high performance fully distributed
Scrum approach is reproducible and not unique to the
SirsiDynix environment.

To investigate the effect of distributing teams on
productivity we can look at the realization cost per
story point throughout the project.

Figure 1: Project costs in hours per story point

It is important to note is that there is a gradual
increase in story point cost during the life of most
projects due to growing complexity and growing
codebase. This constant has been compensated for to
focus the above diagram on any outliers. The transition
from a local team to a distributed team took place at
iteration 6. As can be seen from the resulting graph, the
number of hours needed to implement a story point
was not affected by this distribution. Storypoint
estimates were determined at the beginning of the
project for the whole product backlog and were

determined for new requirements as they surfaced.
Iteration 18 and 19 show a significant increase in hours
needed per story point. Technical debt had been built
up during the previous iterations. Starting with
iteration 20 this technical debt was consistently
removed, resulting in a gradual increase in
productivity.

4.2.2. Clear communication through Scrum. The
Scrum meetings facilitate almost all necessary
communication. This is possible because the team is
fully distributed and shares the same sprint goals. All
Scrum meetings were done in a distributed way using
video conferencing via a simple Skype video call with
the exception of the Demo. Separate meeting rooms are
set up with conference equipment and a Scrum
planning tool using a digital burn down chart to share
the status of the sprint across locations. A microphone
is passed around as ‘talking stick’ to facilitate clear
audibility. Xebia found that face to face visuals greatly
increases the effectiveness of communication and
enhances personal relationships.

The Sprint planning meeting is done with the whole
team using planning poker so that members on both
shores contribute to the estimation process. Planning a
distributed sprint took 4 hours on average.

The daily standup meetings are done when the
Netherlands come to work. A distributed standup lasts
no longer then 15 minutes.

The retrospective goes in the same fashion as the
Sprint planning meeting. The distributed retrospective
is completed in 2 hours.

The demo was not shared in this case to provide
maximum focus and responsiveness to the customer.
The Dutch members briefed the Indian members after
every Demo.

A Scrum of Scrums meeting was held by
ScrumMasters after the stand-ups to synchronize any
dependant issues or impediments as well as
technological issues.

Together these meetings provide the full official
meeting cycle. One on one meetings are held as
necessary, as well as design discussions. This is no
different from a collocated Scrum with the exception
of tooling.

4.2.3. High quality and consistency. Throughout the
course of the PUB project a lot of attention has been
paid to quality. The Scrum definition of done for this
project includes unit test coverage of at least 80%,
fully automated functional testing, full regression
testing, performance and load testing for all
implemented stories as well as updating the necessary
documentation.

Hours/Storypoint

0
2
4

6
8

10
12
14
16
18
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Iteration

For every functionality the whole team discusses
proper design and necessary refactoring takes place. In
addition to this shared ownership over design every
team employs a ‘quality watchdog’. This is a team
member accountable for quality and consistency. Any
problems that he / she signals are to be picked up and
discussed by the team. All teams share the same team
room and team members participate in design
discussions of other teams in order to maintain
architectural consistency across teams. Pair
programming and rotation of people between teams is
used to avoid code ownership and spread knowledge.

Figure 2: Cumulative vs. open defects in project

All issues that are found outside the iteration are
measured and solved as shown in the graph above
which shows that the number of open defects remains
constant (around 50) and the project is not building up
technical debt during development. The number of
open bugs per KLOC is actually decreasing because
the code base is continuously growing. Other issue
data also shows that more than 90% of the defects
found are solved in the same iteration in which they
were introduced.

Based on these numbers we can conclude that the
verification and validation process has isolated 6
defects per KLOC. During acceptance tests less than 1
defect per KLOC was found. A fair estimate is that
50% of the defects are still left in the product after the
acceptance test, leaving us with 1 defect per KLOC.
This is far less than industry average, which is around
5 defects per KLOC [10]. Fully Distributed OneTeam
Scrums applying XP practices produce extremely high
quality.

4.3.4. Transparency and control. The project could
accurately estimate required time and budget by
combining the product backlog with good estimates
and velocity measured over time [11]. This gave the
client all required information to be in control.
Providing transparency and proof of progress by

showing working software after every iteration created
visibility and built trust.

4.3. Challenges faced

While Scrum is simple to understand, it is not that
easy to implement. Distributed development adds
another layer of complexity. The PUB project
encountered a number of challenges in these area’s.

4.3.1 Cultural differences. Indian and Dutch team
members have a different background and culture. This
shows most clearly in communication. For example,
where Dutch team members can be loud and direct,
Indian team members can be careful and cautious in
their expression. Also India is more hierarchically
oriented than the Netherlands. The first and most
important thing to counter these differences is good
personal relationships. By traveling at the beginning
and throughout the project, by seeing each other daily
in stand-ups, and by being part of the same team we
started building relationships that were focused on the
person. Secondly, a team culture aimed at openness
and direct communication was actively developed by
the ScrumMasters. This helped bring out issues during
retrospectives and lowered communication barriers.
Thirdly, a company culture of openness with an equal
value system on both sites supported the team culture
and made identifying with each other easier.

4.3.2. Sharing context and priorities. In an
offshoring situation it is difficult to fully communicate
all client nuances, context and priorities to offsite team
members. To actively distribute this knowledge we
scheduled regular traveling, always-open Skype
connections, a project news gazette after every
iteration and informal updates by the product owner.

4.3.3. Managing customers new to Agile. Although
the Scrum process does not require a formal project
manager, Xebia does add a project manager to projects.
He or she handles financial arrangements and client
expectations and most importantly does whatever it
takes to make Scrum work for this customer. As the
client did not have previous Agile experience, the
project manager worked with the client as a Meta
ScrumMaster / coach to bring the organization into an
Agile way of working and acted as proxy product
owner. This provided the teams and Scrum masters a
clear product backlog and interface to the client
organization from day one. The proxy product owner /
project manager ensured proper Agile planning and
was in continuous dialog with the client about
deadlines, scope and progress. The ScrumMasters
focused on the sprints, the process and the quality.

Cumulative vs. open defects

0

100
200
300
400
500
600
700
800
900

1 3 5 7 9 1 13 15 1 19 21 2 25 2

Iteration

4.3.4. Some work is local. While all development
work can be distributed there is project work that is not
easily done in a distributed way. The fourth Scrum
team (see 4.1), consisting only of local team members,
was dedicated to specific customer facing compliancy
activities and removing certain impediments. Examples
of local deliverables are writing Dutch documentation,
aligning with customer architectural stakeholders,
discussing requirements with technical stakeholders
and researching technical dependencies between the
infrastructure and other systems. This resulted in
clearing of a lot of roadblocks and a high velocity for
the distributed teams.

4.3.5. Tooling for communication and process. In
this project ScrumWorks was used to manage the
product backlog and sprint backlog electronically.
Burndown graphs were printed everyday and posted on
the wall in the team rooms.

For global sharing of information and
documentation a wiki was used intensively. To discuss
architecture a smartboard (computerized whiteboard)
was used, along with other solutions for digital
whiteboarding. A single code repository, single
continuous build system, test servers accessible from
both locations and a shared mailing list are some of the
tools used to facilitate the development process.

5. Conclusions

In summary, it is possible to create a

distributed/outsourced Scrum with the same velocity
and quality as a collocated team and this capability is
reproducible over many projects. The OneTeam
strategy lowers cost, captures offshore talent, and
allows increasing and decreasing team size without
knowledge loss. We highly recommend this strategy
for experienced Agile teams.

6. About Xebia

“We feel that our customers have a right to work
with the most effective teams, to have those efforts
focused on the priorities that our customer determines,
to get high quality software and to have full
transparency and control over the project planning.”

Xebia is an international Agile software

development company, with offices in the Netherlands,
France and India. The company is specialized in Java
technology, Agile offshoring & projects, Agile
consultancy and training, IT Architecture and
Auditing. See http://www.xebia.com/.

7. References

[1] Sutherland, J., Viktorov, A., and Blount, J.:
"Adaptive Engineering of Large Software Projects with
Distributed/Outsourced Teams". Proc. International
Conference on Complex Systems, Boston, MA, USA,
25-30 June 2006.

[2] Sutherland, J.: "Future of Scrum: Parallel
Pipelining of Sprints in Complex Projects". Proc.
AGILE 2005 Conference, Denver, CO, July 24-29
2005.

[3] Beck, K.: "Extreme Programming Explained:
Embrace Change", Addison-Wesley, Boston, 1999.

[4] Takeuchi, H., and Nonaka, I.: "The New New
Product Development Game", Harvard Business
Review, 1986, (January-February).

[5] Cohn, M.: "User Stories Applied : For Agile
Software Development", Addison-Wesley, 2004.

[6] Sutherland, J., and Schwaber, K.: "The Scrum
Papers: Nuts, Bolts, and Origins of an Agile Method",
Scrum, Inc., Boston, 2007.

[7] Jones, C.: "Software assessments, benchmarks,
and best practices", Addison Wesley, Boston, Mass.,
2000.

[8] Teasley, S., Covi, L., Krishnan, M.S., and Olson,
J.S.: "How Does Radical Collocation Help a Team
Succeed?". Proc. CSCW'00, Philadelphia, PA, 2000,
pp. 339-346.

[9] Sutherland, J., Viktorov, A., Blount, J., and
Puntikov, N.: "Distributed Scrum: Agile Project
Management with Outsourced Development Teams".
Proc. HICSS'40, Hawaii International Conference on
Software Systems, Big Island, Hawaii, 2007.

[10] Humphrey, W.S.: "Introduction to the Personal
Software Process", Addison Wesley, 1996.

[11] Cohn, M.: "Agile Estimation and Planning",
Addison-Wesley, 2005.

